

SABIC® PC RESIN ALSO 1

POLYCARBONATE FOR USE IN THE AUTOMOTIVE LENS MARKET

DESCRIPTION

ALSO1 is a medium-low flow (MFR13), heat and UV stabilized, polycarbonate product with mold release designed for use in the automotive lens market.

TYPICAL APPLICATIONS

ALSO1 is a medium-low flow (MFR13), heat and UV stabilized, polycarbonate product with mold release designed for use in the automotive lens market.

TYPICAL PROPERTY VALUES			Revision 202200
PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL			
Tensile Stress, yld, Type I, 50 mm/min (1)	63	MPa	ASTM D638
Tensile Strain, yld, Type I, 50 mm/min	6	%	ASTM D638
Tensile Strain, brk, Type I, 50 mm/min	>70	%	ASTM D638
Tensile Modulus, 50 mm/min	2350	MPa	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	90	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	2300	MPa	ASTM D790
Hardness, Rockwell R	120		ASTM D785
Tensile Stress, yield, 50 mm/min	63	MPa	ISO 527
Tensile Strain, yield, 50 mm/min	6	%	ISO 527
Tensile Strain, break, 50 mm/min	>70	%	ISO 527
Tensile Modulus, 1 mm/min	2350	MPa	ISO 527
Flexural Stress, yield, 2 mm/min	90	MPa	ISO 178
Flexural Modulus, 2 mm/min	2300	MPa	ISO 178
Hardness, Rockwell R	120	-	ISO 2039-2
MPACT			
zod Impact, unnotched, 23°C	NB	J/m	ASTM D4812
zod Impact, notched, 23°C	800	J/m	ASTM D256
nstrumented Dart Impact Energy @ peak, 23°C	65	J	ASTM D3763
zod Impact, unnotched 80*10*3 +23°C	NB	kJ/m²	ISO 180/1U
zod Impact, unnotched 80*10*3 -30°C	NB	kJ/m²	ISO 180/1U
zod Impact, notched 80*10*3 +23°C	70	kJ/m²	ISO 180/1A
zod Impact, notched 80*10*3 -30°C	12	kJ/m²	ISO 180/1A
THERMAL			
/icat Softening Temp, Rate B/50	143	°C	ASTM D1525
HDT, 0.45 MPa, 3.2 mm	138	°C	ASTM D648
HDT, 1.82 MPa, 3.2 mm	127	°C	ASTM D648
CTE, -40°C to 95°C, flow	7.E-05	1/°C	ASTM E831
Thermal Conductivity	0.2	W/m-°C	ASTM C177
Thermal Conductivity	0.2	W/m-°C	ISO 8302
CTE, 23°C to 80°C, flow	7.E-05	1/°C	ISO 11359-2
Ball Pressure Test, 125°C +/- 2°C	Passes	=	IEC 60695-10-2
/icat Softening Temp, Rate B/50	143	°C	ISO 306

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	138	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	127	°C	ISO 75/Af
PHYSICAL			
Specific Gravity	1.2	-	ASTM D792
Water Absorption, (23°C/Saturated)	0.35	%	ASTM D570
Mold Shrinkage on Tensile Bar, flow (2)	0.5 – 0.7	%	SABIC method
Mold Shrinkage, flow, 3.2 mm	0.5 – 0.7	%	SABIC method
Melt Flow Rate, 300°C/1.2 kgf	13	g/10 min	ASTM D1238
Density	1.2	g/cm³	ISO 1183
Water Absorption, (23°C/saturated)	0.35	%	ISO 62-1
Melt Volume Rate, MVR at 300°C/1.2 kg	12	cm³/10 min	ISO 1133
OPTICAL			
Light Transmission, 2.54 mm	88 – 90	%	ASTM D1003
Haze, 2.54 mm	<0.8	%	ASTM D1003
Refractive Index	1.586		ASTM D542
Refractive Index	1.586	-	ISO 489
ELECTRICAL			
Volume Resistivity	>1,E+15	Ω.cm	ASTM D257
Dielectric Strength, 1.6 mm	27	kV/mm	ASTM D149
Relative Permittivity, 60 Hz	3	-	ASTM D150
Relative Permittivity, 1 MHz	3	-	ASTM D150
Dissipation Factor, 60 Hz	0.001	=	ASTM D150
Dissipation Factor, 1 MHz	0.01	-	ASTM D150
Volume Resistivity	>1.E+15	$\Omega.cm$	IEC 60093
Dielectric Strength, 1.6 mm	27	kV/mm	IEC 60243-1
Relative Permittivity, 60 Hz	3	-	IEC 60250
Relative Permittivity, 1 MHz	3	-	IEC 60250
Dissipation Factor, 60 Hz	0.001	-	IEC 60250
Dissipation Factor, 1 MHz	0.01	-	IEC 60250
INJECTION MOLDING			
Drying Temperature	120	°C	
Drying Time	2 – 4	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	280 – 310	°C	
Nozzle Temperature	270 – 290	°C	
Front - Zone 3 Temperature	280 – 310	°C	
Middle - Zone 2 Temperature	270 – 290	°C	
Rear - Zone 1 Temperature	260 – 280	°C	
Hopper Temperature	60 – 80	°C	
Mold Temperature	80 – 110	°C	

⁽¹⁾ Typical values only. Variations within normal tolerances are possible for various colors. All values are measured after at least 48 hours storage at 23°C/50% relative humidity. All properties, except the melt volume and melt flow rates, are measured on injection molded samples. All samples tested under ISO test standards are prepared according to ISO 294.

⁽²⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, and part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.

